
LabVIEW Loop – Shift
Register
ABE 4423 /6423 – Bioinstrumentation II
Dr. Filip To
Ag and Bio Engineering, Mississippi State University

FOR Loop and WHILE Loop

LabVIEW has only two Loop structures: FOR Loop and WHILE
Loop.

FOR loop executes the code (sub-diagram) inside its border for a
total of N times, where N is the value wired to its Loop Count
terminal. The Loop Count is set before the FOR Loop is entered
(it is wired from outside the loop). If 0 is wired to the Count
terminal then the loop does not execute.

FOR LOOP

LOOP COUNT
TERMINAL

Loop Index (Iteration Terminal),
Auto Incrementing Numeric
Control (U32), starts from 0

FOR Loop

The Iteration Terminal (the blue square with i in the
middle) contains the number of iterations that have
been completed. It is 0 at the start of the first iteration,
1 at the start of the second iteration, it increments
from 0 to N-1 (N is the total number of iterations the
loop executes before exiting).

In text based programming, the FOR loop structure is
equivalent to:
FOR I = 0 to N-1

execute sub-diagram.

WHILE Loop

WHILE loop executes the sub-diagram inside its
border until the Boolean value wired to its
Conditional Stop Terminal is TRUE.

There are two modes of Conditional Terminal inside a
WHILE loop: Stop If TRUE (red), and Continue
while TRUE mode (green).

WHILE LOOP

Loop Index

Conditional Terminal
(STOP If True)

Conditional Terminal
(CONTINUE If True)

WHILE Loop

The mode of the Conditional Terminal of WHILE Loop is
changed by using the POP-UP (right-click) on it, or by using
the “Finger” cursor to click on it (you can make it Stop If
True/ Continue While True) .

Common behavior of Data inside a loop structure:
if a data is wired into a loop structure, that data is captured at
entry of the loop. Only the value when the loop is entered is
captured. Any changes to that data while the loop is executing
is not detectable (“visible”) inside the loop.
If a data is wired from inside the loop to an object outside a
loop structure, that object will only get that data after the
loop has exited (it gets the last data prior to loop exit).
If you want data (input data / output data) to be
captured/updated at each iteration of a loop you must put
that data object inside the loop structure.

What’s The Difference?

Shift Registers
It is used with a loop structure. It is attached to a loop structure by
right-clicking the border of the loop and select ADD SHIFT
REGISTER. It is a data holder used to capture data value during
loop iterations.

When you add a new shift register onto a loop, LabVIEW
automatically add one pair: a Shift-In register (on left frame of the
loop structure) and a Shift-Out register (on right frame of the loop
structure)

Shift-in register captures its data at the beginning of an iteration,
and Shift-out register captures its data at the end of an iteration.

Shift-in register initially (at entry) gets its data from outside the
loop and after that its data comes from shift-out register at the
beginning of every new iteration. Shift-out register gets its data
from the program inside the loop structure.

Shift Registers
Shift-Out Register
Gets its data at end

of an iteration
Shift-in Register

Gets its data at the
start of an iteration

Added by
Right-Clicking
the border of a
loop structure

Shift Registers

Once a pair of Shift Register is created, it is possible to add elements
to any of them to make it a “deeper” shift register to make it
“remember” values from previous iterations. It is also possible to
remove elements from a shift register to make it “shallower” by right-
clicking it. The least number of elements in a shift register is 1.

A shift register’s content is shifted forward (toward the direction of
the arrow (triangle symbol)) once in every iteration of the loop. The
front most (bottom most for shift-in, top most for shift-out) element
of a shift register gets shifted out and its content is filled with the
data from the register behind it successively, hence the term Shift
Register.

There is no limit on how many pairs of shift registers that can be
added to a loop structure or how deep a shift register you can make.

How Shift Registers Work
Shift registers are Polymorphic (they can handle different data
types), but shift-in and shift-out registers of the same group must
have the same data type.

When shift registers are added onto a loop structure, the shift-in
register must be wired with an initial value/data (this is the
value/data it will have upon entry into the loop).

Inside the loop the shift-out must be wired with the same data
type as the shift-in register.

During iteration of the loop, data from the shift-in register is valid
at start of iteration, and upon completion of an iteration the data
of the font most of the shift-out register is moved into the tail
position of the shift-in while the remainder data in the front
positions of the shift registers get shifted forward one position.
The process of shifting data forward and from shift-out to shift-in
continues until the loop exits.

In-class Example
See the following For Loop:

There are two groups of
shift Registers: the top
group has two shift-in elements
and one shift-out element
The bottom group has one
shift-in and one shift-out elements

The shift-in elements of the top group is initialized to 2, and the bottom
group is initialized to “a”

Inside the loop: the numeric data is multiplied by 0.1, and the string data
is concatenated with a comma.

The For loop is set to run 5 iterations.

Example: Continued
Upon entry into the For Loop both elements of the numeric shift-in
register will have 2 in them already, and the string shift-in will have “a”

Iteration 1: the result of multiplication is 2*0.1 = 0.2, and the result of
string operation is “a,”. At the end of iteration 1 the numeric shift-out
register will have 0.2 and the string shift-out will have “a,”

Iteration 2: The front element (bottom most) of the numeric shift-in will
have 2 and the tail (top most) element will have 0.2, while the string sift-in
will have “a,”. Then the code in the loop is executed again, which will
result in 0.2 being put in the numeric shift-out, and “a,,” is put in the
string shift-out.

Iteration 3: repeat as described in iteration 2: the front element of
numeric shift-in will have 0.2 and the tail element will have 0.02; the
string shift-in will have “a,,”

When the loop exits, the shift-out of string will have “a,,,,,” and the
numeric shift-out will have 0.002

In-Class Example
Write a VI so that it can run continuously when the RUN button is
clicked (without clicking the Run Continuously button) and the
program will stop running when a STOP button is pressed or when
the task is done.

Make the program do the following approximation task: Given a
formula y = - x3 + 3x2 – 5x + 2, find x that will make y = 0.5. It is
easier to do this by approximation…

Using a loop structure we iterate the value of x starting rom 0 and
incrementing it a small amount in every loop iteration until the
answer either matches the given y value of get close to it within a
specified tolerance (say, 5%).

A While loop is suitable for doing this because we don’t know how
many times we have to iterate. Case Structure is needed because there
is a decision to be made, the decision to exit the loop when the
answer is found or when the user press the STOP button.

Homework Due Next Class
Meeting

Write a VI that estimate the height (h) of a partially filled sphere and the percent
difference between estimated and given values (how do you define % difference?).
The given values are the volume of the liquid and the radius of the sphere. The
picture can be obtained from the web.
The formula for computing the volume of a partially filled sphere is as follows: Vp
= π *(h2 * r - h3/3), where Vp is the volume of the liquid, h is the height of the
liquid from the bottom of the sphere, and r is the radius of the sphere. Your
program must also handle exceptions like h > 2r, h < 0, and r < 0 by displaying an
appropriate pop-up message. Include Your name and an illustration (picture) of
the shape (sphere) and the parameters. Include a numeric indicator showing how
many iteration it takes to arrive at the correct result.

Hint: Iterative approach in finding solution for this problem is done by
approximation as follows: you create a Tolerance value below which you will accept
the solution as correct. You create and Increment Constant which you will use to
increment the estimated value of h after each iteration. You estimate the value of h
by initially make it = 0 and use this value to compute a new volume using the
formula and compare the result against the given volume. If the difference between
the new v and the Given v is < Tolerance then the estimated h is the h value you
sought, which you can display it and exit the program. Otherwise you will repeat
the computation using a new h by incrementing its old value by the Increment
Constant.

